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ABSTRACT

In the main body of our report,we developed an asymptotic

ray theory that predicts correctly the exterior resonant frequencies

of a sphere. A logical extension of this work is to spheroids

where, unlike the sphere, the polar ray orbit resonance condition

is nontrivial. The idea is thus to extend the results to separable

coordinate systems, so that the WKB resonance condition can be

applied independently to the rays along the three coordinate paths.

The radial ray path remains trapped between a scattering surface

and the turning point caustic.

At this point the results of this addendum are only formal

and tentative. No numerical work has yet been carried out.
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INTRODUCTION

As a further development of our ideas, let us set up the

exterior resonance conditions on a prolate spheroid. Since

natural frequencies are available in the literature for this body,

this computation can be checked against existing theory [1].

Thus we introduce the spheroidal coordinates (u, 86, ) by

stating their relation to the Cartesian coordinates (x, y, z).

x - a sinhu sin 6 cos

y - a sinhu sin 8 sin 4 (A.1)

z - a coshu cos 8

The u - constant surfaces are confocal prolate spheroids rota-

tionally symmetric about the z axis. In the limit u - , and

a - 0 such that r - a sinhu is finite, the system (A.1) returns

to the usual spherical system (r, 6, 0). Let us define the

contravariant vectors

1 1
u 1 coshu , x W x

u 2 a c x 2 y (A.2)

3 3

Then the fundamental arc length formula is defined to be
2 3

ds - Z gijdu duJ  (A.3)
i,j-l

J l . . . .1



where

3
3X9 1axjSg i j z z u i D

-h 2i ij

h 2  2a((u) 2 - (u)2) h 2 =a 2 ((u) 2 - (u2)2)

1 1 2 ' 2 2 2(u) -l i-(u)

h23 = a 2((u) -1) (1- (u2) 2)

Since the metric tensor gij is diagonal, the prolate spheroidal

coordinate system is seen to be orthogonal. From the scale factors

h i as given by (A.3) one computes the Laplacian operator according

to the prescription

V2 3 a a=lpu
(q z(A.5)

-g i-iqu a

where

qi V-- g = h 2 h2 h2  det(g)2 2 2

The scalar wave equation (V2 + k 2) - 0

takes the form

1 T E((ul) 2 - 1)] + - [(1-(u22) 2(1)2- 2  2 u u2  2u

S+ 1 32P +()2 , . (A.6)
u((u) 2 - )(a-(u 3 ) 2  a(u3)2

2



Using the usual separation of variables techniques we let

R(u ) e (u 2) (u3). (A.7)

Substitution of (A.7) into (A.6) eventually leads to the following

three separated ordinary differential equations for R, 0 and 0.
21

(((u1)2 - 1) R1(U 1 + ((ka)2 (U1)2 m + )R(u1)- 0
(u,)2_1

, 22 2 22 m2  2(i (u) 2) E) (u + (a (u) + 22 + X) 0 (u 0

-(u2
(" (u3) + m2 D (u3) 0 (A.8)

In (A.8), m2 and X are the separation constants. The equation

for (u3) requires that m be an integer to satisfy physical constraint

that u - 0 be the same point as u3 . 2ir.

The rotational symmetry of the prolate spheroid about the z

axis as follows from equation (A.1) determines the separation con-

stant m. Consequently, the two remaining unknowns for the geometric

computation of resonant frequencies are the wave number k and the

separation constant X.

The two conditions needed to determine k and X are the polar

resonance orbit and the radial resonance orbit. In the latter con-

dition the "orbit" is between the turning point caustic and the

surface of the spheroid.

3



POLAR ORBIT RESONANCE CONDITION

Because of the analytic nature of the phase function, there

is no loss of generality to simplify the polar resonance condition

by computing it for m - 0 and also just inside the caustic surface.

By inspection of the radial differential equation for R given in

(A.8), the turning point caustic satisfies the equation

X= Q2 cosh2 (u) Q £ = ka (A.9)

where from (A.1) u is seen to be the radial coordinate.

In (A.9) we have introduced Q, the large parameter of this

asymptotic calculation. The differential equation for 0 as given by

(A.8) under these conditions becomes

((l-x 2) T'(x))' + S22 (cosh2 u - x2) T(x) - 0 (A.10)

where x - u 2  cos e and T(x) = 0 (cos 6). To utilize the WKB

approach, we make the further change of variables

y W tanh-l (x) , 4 (y) - T (x) (A.11)

in (A.10) to obtain

4,, (y)+ Q2 f 2 (y) 4 (y) - 0 (A.12)

where

r. 4



fy.(cosh2u - tanh2Y)yl/2 (A.13)
cosh2 y

From (A.13) it is seen that there are no finite turning points. Thus

the WKB solution of (A.12) is

(y) = exp (i 0 S (y)) (A. 14)

where the phase function S(y) is

S(y) - f(y')dy' + I- In (f(y)) + 0( (A.15)-4 2SI0

Returning to the original angle variable e through the trans-

formation cos e = tanhy, the real (SR(e)), and imaginary (SI(6)), parts

of the phase function S(6) become

S(8) = (cosh 2u - cos29')1 /2 de' (A.16)
R j 0

S (e) - L in [(cosh 2u - cos2q) I / 2 sin e] (A.17)
I 2

Let us interpret this result geometrically by computing a geometric

optics solution of a ray traveling along a polar orbit on the spheroid.

The geometric optics ray solution G.O. (0) takes the form

*G.O. ( ) ei kl(e) (A.18)

where 1(8) - ds , ds- (A.19)
0

From (A.1) the arc length increment ds is easily seen to be

do " a(cosh2u - cos2 8)1/2 dO (A.20)

........5
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Thus from (A.16) and (A.18) through (A.20)

G.O.() exp (i Q SR (8)) (A.21)

Comparing the geometric optics field (A.21) with the WKB solution

(A.14), it is seen they differ by terms of order 0 (1/R). The

attenuation factor S (8) is of order 0 (i) and accounts for ray tube

spreading on the curved convex ray path.

4The polar resonance condition consists of requiring that the

polar phase S(6) satisfy the global condition

Q fo S(8) d8 = 2n7r08

n8 = 1,2,3....

Because of four-fold symmetry this can also be written as

pr/2
SJo S() d = na 7r/2 (A.22)

It remains to evaluate the integral in (A.22). Separating the

phase function into its real and imaginary parts according to (A.i6)

and (A.17) produces two integrals. The imaginary part can be evaluated

in terms of elementary functions. One determines

S (6) de T [u - 2 in 2] (A.23)
0 1_

The corresponding integral of SR (8) is expressible in terms of

elliptic integrals of the second kind. This is not surprising. Elliptic

6



integrals were originally encountered in the calculation of the

perimeter of an ellipse [4]! Manipulation of (A.16) results in

S (6) -cscct fE(sin at) -E(7r/2 -e~a)) (A.24)

where

a Sin C-)1
coshu

4and the elliptic integrals of the second kind are defined as [5]:

E($\c) - o(1 - sin 2csn 0/2 de (A.25)

and the complete integral E(sin aL) is defined as

E(sin\ct) -E(7T/2 a)-= (1 - sin2 a sin' e)l/de (A.26)

Substituting (A.24) into the resonance condition (A. 22) requires the

integral

fTr/ 2 
Tr/ 22J S R(OdO c sca fir/2 E(sin2 tX) - J0O(l - sin2 acos2 ) del (.7

f l22 2 1/2
cscca { (7/2 - 6) (1 -sin ct Cos 0) del

Combining results (A.22), (A.23) and (A.27) yields the resonance

condition

f7r/2 2 2 12n0T
Q cscc& (7r/2 6) )(1 -sin aCcos2  )l/ de + -(u-2 kn2)

where

- Sin 1I 1 cosh 2u -- (A.28)cos hu)

7



Equation (A.28) contains two unknowns, X and 0. The required addi-

.4 tional condition is now considered.

RADIAL RESONANCE CONDITION

As was described in the main body of the report, the radial

resonance condition requires that the evanescent ray path between the

scattering surface and the turning point caustic be an integer number

of wavelengths. Included in this phase resonance are the discontinuous

phase change at the caustic surface and, if necessary, at the surface

of the scatterer.

To begin, we consider the radial differential equation for

R(u1) as given in (A.8). In it let

scoth (u , (s) R (uI) (A.29)

This is the legimitate change since u = coshu > 1. The equation for

VP(s) becomes

1(s) + s n (Q) s 0 (A.30)

where

n2(s) coth2(s) m 2  2(s) h2(s) M- + -L cschs (A.31)

sinh 2 (s +Z S

The caustic surface is defined by the positive value of s denoted by

8 such that

n(s ) 0 (A.32)c

The solution to (A.32) is the proper root of

8
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1+ 2 2 2 21/2s nh [2 + X t + X) + 4 m) 1/2
2m2

m > 0

sc  sinh -

m 0

When m = 0, it is therefore necessary that -X/2 > 1.

For eigenvalues which correspond to bound discrete modes to

-4 exist, it is required that the effective refractive index profile

n (s) have the property that

n2(s) < 0 sc < s < sb

n2(s) 0 s = sc (A.34)

n2(s) > 0 s <

In (A.34) sb defines the spheroid surface. The radial res-

onance condition for a perfectly conducting prolate spheroid with the

electric field normal to the surface is

2 QJc n(s)ds - 27 (n r - 1/4) (A.35)
fsb

n = 1,2,3...

In (A.35) sb is the surface of the spheroid defined by

coth(sb) - cosh(%) where defines the spheroid through equation (A.1)

when u - . An explicit form of the radial resonance is

fPc (m2 - P(s2 + X) - p2a2)1/2  dP - 2ri(n - 1/4)

(A.36)

9
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where

Pb-cosh 2u -1 and

PC = 1/2 [((l + X/1I2) 2 + 4m 2 (2 + ,/n2)]

The simultaneous solution of (A.28) and (A.35) for X and S

constitutes the formal asymptotic solution to the exterior resonant

frequencies of a perfectly conducting prolate spheroid.

:4

10



REFERENCES

1. Marin Lennart, Natural-Mode Representation of Transient Scatter-
ing from Notationally Symmetric, Perfectly Conducting Bodies
and Numerical Results for a Prolate Spheroid, Interaction Note 119,
September 1972.

2. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company,Inc., New York, pp. 38-49, 1941.

3. Budden, K. G., Radio Waves in the Ionosphere, Cambridge University-4 Press, Cambridge, Great Britain, pp. 131-136, 1966.

4. Jeffreys H. and B. S. Jeffries, Mathematical Physics, Cambridge
University Press, Cambridge, Great Britain, Second Edition,
p. 667, 1950.

5. Abramowitz, M. and I. Stegum (editors), Handbook of Mathematical
Functions, U. S. Government Printing Office, pp. 589-595, 1964.

I

i1


